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In the present paper the Δ-equivalence problem of monadic logic programs 
(logic programs using only monadic functional and predicate symbols) is 
investigated. It is shown that contrary to the general case, the relation of Δ-
equivalence is decidable in case of monadic programs. Our proof is based on the 
decidability of Rabin’s monadic second order logic of successor functions.  
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Introduction. The present article deals with the study of equivalence of 
logic programs. One of the reasons for studying the equivalence is the program 
transformations. Indeed, it is often desirable to optimise a program and the key 
requirement is that the resulting program be equivalent to the original one. The first 
question to ask is how to define the equivalence of logic programs. Logic programs 
are first order logic formulas and it would be natural to consider them as 
equivalent, if they are equivalent as logic formulas. This is however much stronger 
than is usually needed. A more useful definition would consider the programs to be 
equivalent, if the sets of queries that are logical consequences of programs are the 
same. This is the notion of the so-called Δ-equivalence. It is known that the 
problem of Δ-equivalence is not decidable [1]. In the present article we show the 
decidability of the problem of Δ-equivalence for monadic logic programs (i.e. 
programs containing only monadic functional and predicate symbols). Our proof is 
based on the decidability of Rabin’s monadic second order logic of successor 
functions. It is also possible to show the decidability using the result that the least 
Herbrand model of a monadic program is a regular set [2]. 

Notation and Background. Let  be a first order language with at least one 
constant symbol. We use propositional connectives  

L
, , ,¬ ∧ ∨ →  and quantifiers 

. A clause is a formula of the form ,∀ ∃ 1( ... nC C )∀ ∨ ∨ , where  is either an 
atomic formula (positive literal) or a negation of an atomic formula (negative 
literal). We will write the clause 

iC

1 1( ... ... )nA A B Bm∀ ∨ ∨ ∨¬ ∨ ∨¬  in the form 
 for atomic formulas  and 1 1,..., ,...,nA A B B← m 1,..., nA A 1,..., mB B . In case of  

the arrow is usually omitted. A clause with a single positive literal is called a 
0m =
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definite or program clause. The positive literal of a definite clause is called its head 
and negative ones – its body. A (logic) program is a non-empty finite set of definite 
clauses. A query is a formula of the form 1( ... nA )A∃ ∧ ∧ , where  are 
atomic formulas. Note that the negation of the above query is logically equivalent 
to the clause . 

1,..., nA A

1,..., nA A←
Definition 1. Two programs  and  are called Δ-equivalent (denoted as 

), if for every query  of  the following holds:  is a logical 
consequence of , iff it is a logical consequence of  (see [1]). 

1P 2P

1P P
Δ
∼ 2 Q L Q

1P 2P
Note that Δ-equivalent programs need not be logically equivalent (i.e. have 

the same models). For example, if predicate symbols p  and  never occur in a 
program, then the addition of clause 

q
( ) ( )p x q x←  does not allow us to infer any 

new queries, so the resulting program would be Δ-equivalent (but not logically 
equivalent) to the original one. Another observation to make is that the definition 
of Δ-equivalence depends on the underlying first order language. For example, the 
question whether the programs ( )p x  and   

( ( )) ( ),
( )

p f x p x
p a

←
 

are Δ-equivalent or not depends upon whether the underlying language contains 
any functional or constant symbols besides f  and a . 

The Herbrand universe of  (denoted as ) is the set of  all ground terms 
(terms not containing variables), and Herbrand base of  (denoted as 

L LU
L LB ) is the 

set of all ground atoms.  An interpretation  is called a Herbrand interpretation, if I
• the domain of the interpretation is LU  ( LU  is not empty as L  contains at 

least one constant); 
• every constant symbol corresponds to itself; 
• every functional symbol f  corresponds to a function If  such that 

n1 1( ,..., ) ( ,..., )I
nf t t f= t t  for every .., n Lt t U1,. ∈ . 

A Herbrand interpretation corresponds to a subset of LB  (the set of atoms 
true under the interpretation). Conversely, every subset of LB  defines a Herbrand 
interpretation. We will identify Herbrand interpretations with subsets of LB . 

Fact 1. If a set of clauses has a model, then it has a Herbrand model (see 
[3]). 

Fact 2. If A  is a non-empty set and Mα  is a Herbrand model of a program 
 for every P Aα ∈ , then 

A
Mα

α∈
∩  is also a model of P  (see [3]). 

Thus, each program  would have the least Herbrand model P PM  that is the 
intersection of all its Herbrand models (the set of Herbrand models of a program is 
definitely not empty). 

A substitution is a finite set of pairs 1 1{ / ,..., / }n nx t x tθ = , where ix  are 
distinct variables and  are terms for it 1,...,i n= , . If 0n ≥ F  is a formula and θ  is 
the above substitution, then Fθ  denotes the formula, obtained from F  by 
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simultanious substitution of all free occurrences of ix  by it . Fθ  is then called an 
instance of F . From the above discussion it is easy t prove the following 

Fact 3 A query 1( ... )n

o 
. A A∃ ∧ ∧  is a logical consequence of program P , iff 

for some substitution θ  we have i pMAθ ∈  for 1,...,i n=  (see [3]). 
Corollary 1. Programs 1P  a  Δ-equivalent, iff nd are 2P  

1 2
M M= . P P

PLet ( )g P  be the set of ground instances of clauses of .  Define a function 
: 2 2L LB

PT  aB → s follows 0 0 1( ) { : ,..., ( )P nT I A A A A g P= ← ∈  nd 1,..., }na A A I∈ . 
rdinal For an o α  define PT α↑  as: 

)
• 0 0PT ↑ = / ; 
• ( 1) (P P PT T Tβ β↑ + = ↑ ; 
• P PT T

β δ
δ β

<
↑ = ↑∪  for a limit ordinal δ . 

Fact 4.  For a program  (see [3]). 
s onadic secon c of successor functions. 

Fix so

et suc

 P , P PT Mω↑ =
Let us introduce Rabin’ m d order logi
me natural number 1n ≥ . The theory SnS  consists of a countable set of 

object variables, a countable set of predicate variables, a single constant symbol a  
and n  monadic functional symbols 1,..., nr r . The Terms of SnS  are exactly those of 
the f st order logic constructed fro ,..., nr  and object variables. The set of 
formulas of SnS  is defined as the least s at 

•  if 

ir m 1,a r
h th

X  is then  a predicate variable and t  is a term, ( )X t  is a formula; 
le, •  if F and G are formulas, x is an object variable and X is a predicate variab

then ( ), ( ),( ),( ),( ),( ),( ),( )F F G F G F G xF xF XF XF¬ ∧ ∨ → ∀ ∃ ∀ ∃  are formulas. 
to the Herbrand inteThe semantics of  formulas is defined with respect r-

pretat qua

formu
It is known that the problem of Δ-equivalence of 

logic p

uage is 
finite.

SnS
ion (second order ntifiers range over subsets of the Herbrand universe). 

Observe that since SnS  does not contain predicate symbols, there is a unique 
Herbrand interpretation. Thus, the closed formulas of SnS  are either true or false. 

Fact 5. There is an algorithm for deciding whether a given closed SnS  
la is true or false (see [4]). 
Results and Discussions. 
rograms is not decidable, i.e. there is no algorithm to decides whether two given 

programs are Δ-equivalent in the given language or not  [1]. Here we study the decida-
bility of Δ-equivalence under the additional assumption that the language in question is 
monadic (i.e. predicate and functional symbols of the language are monadic).  

First observe that we can further assume that the first order lang
 Indeed, let L  be a first order language with countable number of constant 

symbols 1 2, ,...c c  and consider programs 1P  and 2P . Let 1,..., nc c  be the constant 
symbols used in 1P  and 2P . From symmetry considerations it is clear that the 
ground atom A  is a logical consequence of a program iP , iff the atom A′ , obtai-
ned from A  by replacing all constant symbols jc  with j n>  by 1nc + , is a logical 

consequnce of the program. Thus, 1P  and 2P  would be Δ vale  L , iff they 
are Δ-equivalent in a language obtained from L  by dropping all constant symbols 

-equi nt in
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jc  with 1.j n> +  The case of a language with countable number of predicate or 
 is handled similarly. Hereafter L  will denote a first order finite 

monadic language with at least one constant symbol
A program is said to be in canonical form, if 

functional s

every variable in the head of 
 

       

 monadic program  in  there is a program  in 

canon

ymbols
. 

every clause (in case of monadic programs there may be at most one variable in the 
head of a clause) occurs also in its body. We prove that every program has a  
Δ-equivalent canonical form. 

Proposition 1. For every  P L  P′

ical form such that ~P P
Δ

′ . 
Proof. Assume that P  contains a clause 0 1( ) ,..., nA x A A← , where the vari-

able x occurs in 0A , but not in 1,..., nA A . The clau om P and instead 
the following ones are added: fo onstant c of L  the clause 0 1( ) ,..., nA c A A←  
and for every functional symbol f of L the clause 0 0( ( )) (

se is removed fr
r every c

),A f x A x←  1,..., nA A (it is
 4 and Corollary 

 
essential that the language is finite). Using Fact 1 it is easy to 
prove that the resulting program is Δ-equivalent to P  in L . Repeating this proce-
dure for every clause that violates the definition of a canonical program, one would 
come to a program P′  that is in canonical form and is Δ-equivalent to P  in L .    □ 

Thus, we can ly study Δ-equivalence problem for canonical programs. Let  on
be 

m
L  a monadic language and P  a canonical program. We are going to define a 

onadic language L′  with a single constant symbol and a program P′  in it, which 
will be in a sense equivalent to P . The first order language is fined by its 
constant, functional and predicate sy bols: 

•  the single constant symbol of L

de
m

′  is denoted by ;  a
•  functional symbols of L′  are those of L  together with a new unary 

functional symbol cf  for each constant symbol c  of L ; 
•  predicate symbols of L′  are precisely those of L . 
A ground term t′  in L′  of the form 1(... ( ( ))n cf f f a , where 1,..., nf f...)  are 

functi , is called norm ssociateonal and c  is a constant symbol of L al. We a  the 
term 1(... )...)nt f f c=  of L  to the above n rmal term. It is easy to see that this 
association is a one-to-one apping between ground terms of L  and normal terms 
of L′ . The program P′  is obtained from P  by replacing each ground term t  with 
the corresponding nor al term t

( o
 m

m ′ . 
L e m m a  1 .  A ground at m ( )p t′  is a logical consequence of P′o , iff  is 

norma
t′

l and ( )p t  is a logical consequence of P . 
Proof. t us prove by induction on n ( ) Pp t T n′′ ∈ ↑ Le  that , iff  is normal 

and 
t′

( ) Pt T n∈ ↑ . The case of 0np =  is obvious. 
e hypothesis holds for n , lAssume th et us prove it for . Let 

p t′ ∈
1n +

( ) 1PT n′ ↑ + . Then there is a clause 0 1,..., mA A A′ ′ ′←  in P′  and a ground sub-

1,..., / }k kstitution { /1x t x tθ ′ = ′ ′  of its variabl i Pes such that A T nθ ′′ ′∈ ↑  for 1,...,i m=  
and 0A ( )p tθ′ ′ on hypothesis (i i iA q s′= . By inducti )θ′ ′ ′= , where is′  is normal and 

(i iq s Since P  and, hence, ) PT n∈ ↑ . P′  ar cal form, all the variables e in canoni

1,..., kx x  occur in the b y of the clause. This implies that 1,..., kt tod ′ ′  are all normal 
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and, hence, so is t′ . Let 0 1,..., mA A A←  be the clause  from, which 

0 1,..., mA A A′ ′ ′←  is derived and , / }k k

 of P
 1 1{ / ,...x t x tθ = . Clearly ( )i i i PA q s T nθ = ∈ ↑  

( ) 1Pand so 0A p t T n∈ ↑ + . 
C

θ =
onversely, me that  assu ( ) 1Pp t T n∈ ↑ + . Then there is a clause 

0 1,..., mA A A  and a substitution }k← k1 1{ / ,..., /x t x tθ =  such that 0 ( )A p tθ =  and 

i PA Tθ ∈ ↑ .n  S irection, for the der ′ ′←
and {

imilar to the other d ived clause ., mA′  

1/ ,..., / }k k

0 1,..A A

1x t x tθ ′ = ′ ′  we have i PA T nθ ′′ ′∈ ↑  and so 0 ( ) 1PA p tθ′ ′ ′ T n′= ∈ ↑  + . □
Corollary 2. Let L  be a fin ical ite monadic language,  and – canon

progra
1P 2P  

ms in it. Let L′ , P  and 2P1′ ′  be obtained from L , 1P  nd 2P  spectively by 
means of the above described procedure. 1P  is Δ-equ al t to  in 

a re
iv en 2P L , iff 1P′  is 

Δ-equivalent to 2P′  in L′ .                                                                   □ 
The language L a le constant symbol and finite number of monadic 

              
′  h s si

functi
ng

onal symbols that are interpreted as successor functions. This enables us to 
use the second order power of SnS  to express statements about Herbrand inter-
pretations of L′ . In particular Δ-equivalence turns out to be expressible in SnS . 

T h e o r e m  1 .  There is an algorithm for deciding whether given p ams 
are Δ-

rogr
equivalent in a given monadic language or not. 
Proof. Let L  be a monadic language, 1P  and P  – programs in it. As was 2

previously noted we can assume that L  is finite. First we construct canonical forms 

1P′  and 2P′  of 1P  and 2P  respectively. learly 1 2 1 2~ ~P P P P
Δ Δ

 C ′ ′⇔ . Next we construct 
onadic language with a single constant La m ′  and programs 1P′′  and 2P′′  such that 

1 2 1 2~ ~P P P P
Δ Δ
′ ′ ′′ ′′⇔ , where the first equivalence is considered i L  and the second 

L  a

n 
one in L′ . 

et  be a single constant symbol, n  be functional sy1,...,r r mbols and 1,..., mp p   
be predicate symbols of L′ . The programs 1P′′  and 2P′′  would not be Δ-equivalent, iff for 
some predicate symbol ip  and some grou  term the atom ( )ind  t p t  is a logical con-
sequence of 1P′′ , not of . From the semantics of SnS  it is clea t the former takes 
place, iff the formula 1 1 1 2( ... ( ( )) ( ( )))m i m it p p P p t p P p t

2P′′ r tha
...p′′ ′′∃ ∀ → ∧∃ ∧¬  of SnS  is true 

and the latter takes pla ( ( )))m iP p tce, if the formula ( ... ( ( )) ...m it p p P p t p p1 2 1 1′′ ′′∃ ∀ → ∧∃ ∧¬  
of SnS  is true ( 1,..., mp p  are predicate v

hus, to hether 1P
ariables and  is an object variable).  t

T decide w ′′  and 2P′′  are Δ-equivalent or not we need to 
check 
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