
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences 2011, № 2, p. 50–54

 I n f o r m a t i c s

DECIDABILITY OF Δ-EQUIVALENCE PROBLEM FOR MONADIC
LOGIC PROGRAMS

L. A. HAYKAZYAN*

Chair of Programming and Information Technologies, YSU

In the present paper the Δ-equivalence problem of monadic logic programs
(logic programs using only monadic functional and predicate symbols) is
investigated. It is shown that contrary to the general case, the relation of Δ-
equivalence is decidable in case of monadic programs. Our proof is based on the
decidability of Rabin’s monadic second order logic of successor functions.

Keywords: logic programming, Δ-equivalence.

Introduction. The present article deals with the study of equivalence of
logic programs. One of the reasons for studying the equivalence is the program
transformations. Indeed, it is often desirable to optimise a program and the key
requirement is that the resulting program be equivalent to the original one. The first
question to ask is how to define the equivalence of logic programs. Logic programs
are first order logic formulas and it would be natural to consider them as
equivalent, if they are equivalent as logic formulas. This is however much stronger
than is usually needed. A more useful definition would consider the programs to be
equivalent, if the sets of queries that are logical consequences of programs are the
same. This is the notion of the so-called Δ-equivalence. It is known that the
problem of Δ-equivalence is not decidable [1]. In the present article we show the
decidability of the problem of Δ-equivalence for monadic logic programs (i.e.
programs containing only monadic functional and predicate symbols). Our proof is
based on the decidability of Rabin’s monadic second order logic of successor
functions. It is also possible to show the decidability using the result that the least
Herbrand model of a monadic program is a regular set [2].

Notation and Background. Let be a first order language with at least one
constant symbol. We use propositional connectives

L
, , ,¬ ∧ ∨ → and quantifiers

. A clause is a formula of the form ,∀ ∃ 1(... nC C)∀ ∨ ∨ , where is either an
atomic formula (positive literal) or a negation of an atomic formula (negative
literal). We will write the clause

iC

1 1(... ...)nA A B Bm∀ ∨ ∨ ∨¬ ∨ ∨¬ in the form
 for atomic formulas and 1 1,..., ,...,nA A B B← m 1,..., nA A 1,..., mB B . In case of

the arrow is usually omitted. A clause with a single positive literal is called a
0m =

* E-mail: levon@rock.com

mailto:levon@rock.com

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, № 2, p. 50–54.

51

definite or program clause. The positive literal of a definite clause is called its head
and negative ones – its body. A (logic) program is a non-empty finite set of definite
clauses. A query is a formula of the form 1(... nA)A∃ ∧ ∧ , where are
atomic formulas. Note that the negation of the above query is logically equivalent
to the clause .

1,..., nA A

1,..., nA A←
Definition 1. Two programs and are called Δ-equivalent (denoted as

), if for every query of the following holds: is a logical
consequence of , iff it is a logical consequence of (see [1]).

1P 2P

1P P
Δ
∼ 2 Q L Q

1P 2P
Note that Δ-equivalent programs need not be logically equivalent (i.e. have

the same models). For example, if predicate symbols p and never occur in a
program, then the addition of clause

q
() ()p x q x← does not allow us to infer any

new queries, so the resulting program would be Δ-equivalent (but not logically
equivalent) to the original one. Another observation to make is that the definition
of Δ-equivalence depends on the underlying first order language. For example, the
question whether the programs ()p x and

(()) (),
()

p f x p x
p a

←

are Δ-equivalent or not depends upon whether the underlying language contains
any functional or constant symbols besides f and a .

The Herbrand universe of (denoted as) is the set of all ground terms
(terms not containing variables), and Herbrand base of (denoted as

L LU
L LB) is the

set of all ground atoms. An interpretation is called a Herbrand interpretation, if I
• the domain of the interpretation is LU (LU is not empty as L contains at

least one constant);
• every constant symbol corresponds to itself;
• every functional symbol f corresponds to a function If such that

n1 1(,...,) (,...,)I
nf t t f= t t for every .., n Lt t U1,. ∈ .

A Herbrand interpretation corresponds to a subset of LB (the set of atoms
true under the interpretation). Conversely, every subset of LB defines a Herbrand
interpretation. We will identify Herbrand interpretations with subsets of LB .

Fact 1. If a set of clauses has a model, then it has a Herbrand model (see
[3]).

Fact 2. If A is a non-empty set and Mα is a Herbrand model of a program
 for every P Aα ∈ , then

A
Mα

α∈
∩ is also a model of P (see [3]).

Thus, each program would have the least Herbrand model P PM that is the
intersection of all its Herbrand models (the set of Herbrand models of a program is
definitely not empty).

A substitution is a finite set of pairs 1 1{ / ,..., / }n nx t x tθ = , where ix are
distinct variables and are terms for it 1,...,i n= , . If 0n ≥ F is a formula and θ is
the above substitution, then Fθ denotes the formula, obtained from F by

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, № 2, p. 50–54.

52

simultanious substitution of all free occurrences of ix by it . Fθ is then called an
instance of F . From the above discussion it is easy t prove the following

Fact 3 A query 1(...)n

o
. A A∃ ∧ ∧ is a logical consequence of program P , iff

for some substitution θ we have i pMAθ ∈ for 1,...,i n= (see [3]).
Corollary 1. Programs 1P a Δ-equivalent, iff nd are 2P

1 2
M M= . P P

PLet ()g P be the set of ground instances of clauses of . Define a function
: 2 2L LB

PT aB → s follows 0 0 1() { : ,..., ()P nT I A A A A g P= ← ∈ nd 1,..., }na A A I∈ .
rdinal For an o α define PT α↑ as:

)
• 0 0PT ↑ = / ;
• (1) (P P PT T Tβ β↑ + = ↑ ;
• P PT T

β δ
δ β

<
↑ = ↑∪ for a limit ordinal δ .

Fact 4. For a program (see [3]).
s onadic secon c of successor functions.

Fix so

et suc

 P , P PT Mω↑ =
Let us introduce Rabin’ m d order logi
me natural number 1n ≥ . The theory SnS consists of a countable set of

object variables, a countable set of predicate variables, a single constant symbol a
and n monadic functional symbols 1,..., nr r . The Terms of SnS are exactly those of
the f st order logic constructed fro ,..., nr and object variables. The set of
formulas of SnS is defined as the least s at

• if

ir m 1,a r
h th

X is then a predicate variable and t is a term, ()X t is a formula;
le, • if F and G are formulas, x is an object variable and X is a predicate variab

then (), (),(),(),(),(),(),()F F G F G F G xF xF XF XF¬ ∧ ∨ → ∀ ∃ ∀ ∃ are formulas.
to the Herbrand inteThe semantics of formulas is defined with respect r-

pretat qua

formu
It is known that the problem of Δ-equivalence of

logic p

uage is
finite.

SnS
ion (second order ntifiers range over subsets of the Herbrand universe).

Observe that since SnS does not contain predicate symbols, there is a unique
Herbrand interpretation. Thus, the closed formulas of SnS are either true or false.

Fact 5. There is an algorithm for deciding whether a given closed SnS
la is true or false (see [4]).
Results and Discussions.
rograms is not decidable, i.e. there is no algorithm to decides whether two given

programs are Δ-equivalent in the given language or not [1]. Here we study the decida-
bility of Δ-equivalence under the additional assumption that the language in question is
monadic (i.e. predicate and functional symbols of the language are monadic).

First observe that we can further assume that the first order lang
 Indeed, let L be a first order language with countable number of constant

symbols 1 2, ,...c c and consider programs 1P and 2P . Let 1,..., nc c be the constant
symbols used in 1P and 2P . From symmetry considerations it is clear that the
ground atom A is a logical consequence of a program iP , iff the atom A′ , obtai-
ned from A by replacing all constant symbols jc with j n> by 1nc + , is a logical

consequnce of the program. Thus, 1P and 2P would be Δ vale L , iff they
are Δ-equivalent in a language obtained from L by dropping all constant symbols

-equi nt in

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, № 2, p. 50–54.

53

jc with 1.j n> + The case of a language with countable number of predicate or
 is handled similarly. Hereafter L will denote a first order finite

monadic language with at least one constant symbol
A program is said to be in canonical form, if

functional s

every variable in the head of

 monadic program in there is a program in

canon

ymbols
.

every clause (in case of monadic programs there may be at most one variable in the
head of a clause) occurs also in its body. We prove that every program has a
Δ-equivalent canonical form.

Proposition 1. For every P L P′

ical form such that ~P P
Δ

′ .
Proof. Assume that P contains a clause 0 1() ,..., nA x A A← , where the vari-

able x occurs in 0A , but not in 1,..., nA A . The clau om P and instead
the following ones are added: fo onstant c of L the clause 0 1() ,..., nA c A A←
and for every functional symbol f of L the clause 0 0(()) (

se is removed fr
r every c

),A f x A x← 1,..., nA A (it is
 4 and Corollary

essential that the language is finite). Using Fact 1 it is easy to
prove that the resulting program is Δ-equivalent to P in L . Repeating this proce-
dure for every clause that violates the definition of a canonical program, one would
come to a program P′ that is in canonical form and is Δ-equivalent to P in L . □

Thus, we can ly study Δ-equivalence problem for canonical programs. Let on
be

m
L a monadic language and P a canonical program. We are going to define a

onadic language L′ with a single constant symbol and a program P′ in it, which
will be in a sense equivalent to P . The first order language is fined by its
constant, functional and predicate sy bols:

• the single constant symbol of L

de
m

′ is denoted by ; a
• functional symbols of L′ are those of L together with a new unary

functional symbol cf for each constant symbol c of L ;
• predicate symbols of L′ are precisely those of L .
A ground term t′ in L′ of the form 1(... (())n cf f f a , where 1,..., nf f...) are

functi , is called norm ssociateonal and c is a constant symbol of L al. We a the
term 1(...)...)nt f f c= of L to the above n rmal term. It is easy to see that this
association is a one-to-one apping between ground terms of L and normal terms
of L′ . The program P′ is obtained from P by replacing each ground term t with
the corresponding nor al term t

(o
 m

m ′ .
L e m m a 1 . A ground at m ()p t′ is a logical consequence of P′o , iff is

norma
t′

l and ()p t is a logical consequence of P .
Proof. t us prove by induction on n () Pp t T n′′ ∈ ↑ Le that , iff is normal

and
t′

() Pt T n∈ ↑ . The case of 0np = is obvious.
e hypothesis holds for n , lAssume th et us prove it for . Let

p t′ ∈
1n +

() 1PT n′ ↑ + . Then there is a clause 0 1,..., mA A A′ ′ ′← in P′ and a ground sub-

1,..., / }k kstitution { /1x t x tθ ′ = ′ ′ of its variabl i Pes such that A T nθ ′′ ′∈ ↑ for 1,...,i m=
and 0A ()p tθ′ ′ on hypothesis (i i iA q s′= . By inducti)θ′ ′ ′= , where is′ is normal and

(i iq s Since P and, hence,) PT n∈ ↑ . P′ ar cal form, all the variables e in canoni

1,..., kx x occur in the b y of the clause. This implies that 1,..., kt tod ′ ′ are all normal

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, № 2, p. 50–54.

54

and, hence, so is t′ . Let 0 1,..., mA A A← be the clause from, which

0 1,..., mA A A′ ′ ′← is derived and , / }k k

 of P
 1 1{ / ,...x t x tθ = . Clearly ()i i i PA q s T nθ = ∈ ↑

() 1Pand so 0A p t T n∈ ↑ + .
C

θ =
onversely, me that assu () 1Pp t T n∈ ↑ + . Then there is a clause

0 1,..., mA A A and a substitution }k← k1 1{ / ,..., /x t x tθ = such that 0 ()A p tθ = and

i PA Tθ ∈ ↑ .n S irection, for the der ′ ′←
and {

imilar to the other d ived clause ., mA′

1/ ,..., / }k k

0 1,..A A

1x t x tθ ′ = ′ ′ we have i PA T nθ ′′ ′∈ ↑ and so 0 () 1PA p tθ′ ′ ′ T n′= ∈ ↑ + . □
Corollary 2. Let L be a fin ical ite monadic language, and – canon

progra
1P 2P

ms in it. Let L′ , P and 2P1′ ′ be obtained from L , 1P nd 2P spectively by
means of the above described procedure. 1P is Δ-equ al t to in

a re
iv en 2P L , iff 1P′ is

Δ-equivalent to 2P′ in L′ . □
The language L a le constant symbol and finite number of monadic

′ h s si

functi
ng

onal symbols that are interpreted as successor functions. This enables us to
use the second order power of SnS to express statements about Herbrand inter-
pretations of L′ . In particular Δ-equivalence turns out to be expressible in SnS .

T h e o r e m 1 . There is an algorithm for deciding whether given p ams
are Δ-

rogr
equivalent in a given monadic language or not.
Proof. Let L be a monadic language, 1P and P – programs in it. As was 2

previously noted we can assume that L is finite. First we construct canonical forms

1P′ and 2P′ of 1P and 2P respectively. learly 1 2 1 2~ ~P P P P
Δ Δ

 C ′ ′⇔ . Next we construct
onadic language with a single constant La m ′ and programs 1P′′ and 2P′′ such that

1 2 1 2~ ~P P P P
Δ Δ
′ ′ ′′ ′′⇔ , where the first equivalence is considered i L and the second

L a

n
one in L′ .

et be a single constant symbol, n be functional sy1,...,r r mbols and 1,..., mp p
be predicate symbols of L′ . The programs 1P′′ and 2P′′ would not be Δ-equivalent, iff for
some predicate symbol ip and some grou term the atom ()ind t p t is a logical con-
sequence of 1P′′ , not of . From the semantics of SnS it is clea t the former takes
place, iff the formula 1 1 1 2(... (()) (()))m i m it p p P p t p P p t

2P′′ r tha
...p′′ ′′∃ ∀ → ∧∃ ∧¬ of SnS is true

and the latter takes pla (()))m iP p tce, if the formula (... (()) ...m it p p P p t p p1 2 1 1′′ ′′∃ ∀ → ∧∃ ∧¬
of SnS is true (1,..., mp p are predicate v

hus, to hether 1P
ariables and is an object variable). t

T decide w ′′ and 2P′′ are Δ-equivalent or not we need to
check

R E F E R E N C E S

 Nigiyan S.A., Khachoyan L.O. Programming and Computer Software, 1997, v. 23, p. 302–309.
Matos A. Theoretical Computer Scienc 04.

, p. 1025–1029.

2m formulas of SnS for m alues i . □

Received 17.09.2010

 v of

1.
2. e, 1997, v. 176, p. 175–2
3. Lloyd J. Foundations of Logic Programming. Springer-Verlag, 1984, 124 p.
4. Rabin M. Bulletin of the American Mathematical Society, 1968, v. 74

